Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Online marketplaces use rating systems to promote the discovery of high-quality products. However, these systems also lead to high variance in producers' economic outcomes: a new producer who sells high-quality items, may unluckily receive a low rating early, severely impacting their future popularity. We investigate the design of rating systems that balance the goals of identifying high-quality products (``efficiency'') and minimizing the variance in outcomes of producers of similar quality (individual ``producer fairness'').We show that there is a trade-off between these two goals: rating systems that promote efficiency are necessarily less individually fair to producers. We introduce prior-weighted rating systems as an approach to managing this trade-off. Informally, the system we propose sets a system-wide prior for the quality of an incoming product; subsequently, the system updates that prior to a posterior for each product's quality based on user-generated ratings over time. We show theoretically that in markets where products accrue reviews at an equal rate, the strength of the rating system's prior determines the operating point on the identified trade-off: the stronger the prior, the more the marketplace discounts early ratings data (increasing individual fairness), but the slower the platform is in learning about true item quality (so efficiency suffers). We further analyze this trade-off in a responsive market where customers make decisions based on historical ratings. Through calibrated simulations in 19 different real-world datasets sourced from large online platforms, we show that the choice of prior strength mediates the same efficiency-consistency trade-off in this setting. Overall, we demonstrate that by tuning the prior as a design choice in a prior-weighted rating system, platforms can be intentional about the balance between efficiency and producer fairness.more » « lessFree, publicly-accessible full text available June 7, 2026
- 
            Social media feed ranking algorithms fail when they too narrowly focus on engagement as their objective. The literature has asserted a wide variety of values that these algorithms should account for as well -- ranging from well-being to productive discourse -- far more than can be encapsulated by a single topic or theory. In response, we present a library of values for social media algorithms: a pluralistic set of 78 values as articulated across the literature, implemented into LLM-powered content classifiers that can be installed individually or in combination for real-time re-ranking of social media feeds. We investigate this approach by developing a browser extension, Alexandria, that re-ranks the X/Twitter feed in real time based on the user's desired values. Through two user studies, both qualitative (N=12) and quantitative (N=257), we found that diverse user needs require a large library of values, enabling more nuanced preferences and greater user control. With this work, we argue that the values criticized as missing from social media ranking algorithms can be operationalized and deployed today through end-user tools.more » « lessFree, publicly-accessible full text available May 16, 2026
- 
            Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. Steering LLMs away from generic output is possible through supervised finetuning or RLHF, but requires prohibitively large datasets for new ad-hoc tasks. We argue that it is instead possible to align an LLM to a specific setting by leveraging a very small number (< 10) of demonstrations as feedback. Our method, Demonstration ITerated Task Optimization (DITTO), directly aligns language model outputs to a user's demonstrated behaviors. Derived using ideas from online imitation learning, DITTO cheaply generates online comparison data by treating users' demonstrations as preferred over output from the LLM and its intermediate checkpoints. Concretely, DITTO operates by having an LLM generate examples that are presumed to be inferior to expert demonstrations. The method iteratively constructs pairwise preference relationships between these LLM-generated samples and expert demonstrations, potentially including comparisons between different training checkpoints. These constructed preference pairs are then used to train the model using a preference optimization algorithm (e.g. DPO). We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts. Additionally, we conduct a user study soliciting a range of demonstrations from participants (N = 16). Across our benchmarks and user study, we find that win-rates for DITTO outperform few-shot prompting, supervised fine-tuning, and other self-play methods by an avg. of 19% points. By using demonstrations as feedback directly, DITTO offers a novel method for effective customization of LLMs.more » « lessFree, publicly-accessible full text available April 25, 2026
- 
            Free, publicly-accessible full text available March 24, 2026
- 
            Social media platforms are too often understood as monoliths with clear priorities. Instead, we analyze them as complex organizations torn between starkly different justifications of their missions. Focusing on the case of Meta, we inductively analyze the company’s public materials and identify three evaluative logics that shape the platform’s decisions: an engagement logic, a public debate logic, and a wellbeing logic. There are clear trade-offs between these logics, which often result in internal conflicts between teams and departments in charge of these different priorities. We examine recent examples showing how Meta rotates between logics in its decision-making, though the goal of engagement dominates in internal negotiations. We outline how this framework can be applied to other social media platforms such as TikTok, Reddit, and X. We discuss the ramifications of our findings for the study of online harms, exclusion, and extraction.more » « less
- 
            Social media systems are as varied as they are pervasive. They have been almost universally adopted for a broad range of purposes including work, entertainment, activism, and decision making. As a result, they have also diversified, with many distinct designs differing in content type, organization, delivery mechanism, access control, and many other dimensions. In this work, we aim to characterize and then distill a concise design space of social media systems that can help us understand similarities and differences, recognize potential consequences of design choice, and identify spaces for innovation. Our model, which we call Form-From, characterizes social media based on (1) the form of the content, either threaded or flat, and (2) from where or from whom one might receive content, ranging from spaces to networks to the commons. We derive Form-From inductively from a larger set of 62 dimensions organized into 10 categories. To demonstrate the utility of our model, we trace the history of social media systems as they traverse the Form-From space over time, and we identify common design patterns within cells of the model.more » « less
- 
            Mounting evidence indicates that the artificial intelligence (AI) systems that rank our social media feeds bear nontrivial responsibility for amplifying partisan animosity: negative thoughts, feelings, and behaviors toward political out-groups. Can we design these AIs to consider democratic values such as mitigating partisan animosity as part of their objective functions? We introduce a method for translating established, vetted social scientific constructs into AI objective functions, which we term societal objective functions, and demonstrate the method with application to the political science construct of anti-democratic attitudes. Traditionally, we have lacked observable outcomes to use to train such models-however, the social sciences have developed survey instruments and qualitative codebooks for these constructs, and their precision facilitates translation into detailed prompts for large language models. We apply this method to create a democratic attitude model that estimates the extent to which a social media post promotes anti-democratic attitudes, and test this democratic attitude model across three studies. In Study 1, we first test the attitudinal and behavioral effectiveness of the intervention among US partisans (N=1,380) by manually annotating (alpha=.895) social media posts with anti-democratic attitude scores and testing several feed ranking conditions based on these scores. Removal (d=.20) and downranking feeds (d=.25) reduced participants' partisan animosity without compromising their experience and engagement. In Study 2, we scale up the manual labels by creating the democratic attitude model, finding strong agreement with manual labels (rho=.75). Finally, in Study 3, we replicate Study 1 using the democratic attitude model instead of manual labels to test its attitudinal and behavioral impact (N=558), and again find that the feed downranking using the societal objective function reduced partisan animosity (d=.25). This method presents a novel strategy to draw on social science theory and methods to mitigate societal harms in social media AIs.more » « less
- 
            Regardless of how much data artificial intelligence agents have available, agents will inevitably encounter previously unseen situations in real-world deployments. Reacting to novel situations by acquiring new information from other people—socially situated learning—is a core faculty of human development. Unfortunately, socially situated learning remains an open challenge for artificial intelligence agents because they must learn how to interact with people to seek out the information that they lack. In this article, we formalize the task of socially situated artificial intelligence—agents that seek out new information through social interactions with people—as a reinforcement learning problem where the agent learns to identify meaningful and informative questions via rewards observed through social interaction. We manifest our framework as an interactive agent that learns how to ask natural language questions about photos as it broadens its visual intelligence on a large photo-sharing social network. Unlike active-learning methods, which implicitly assume that humans are oracles willing to answer any question, our agent adapts its behavior based on observed norms of which questions people are or are not interested to answer. Through an 8-mo deployment where our agent interacted with 236,000 social media users, our agent improved its performance at recognizing new visual information by 112%. A controlled field experiment confirmed that our agent outperformed an active-learning baseline by 25.6%. This work advances opportunities for continuously improving artificial intelligence (AI) agents that better respect norms in open social environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
